Abstract:Studying the growth and metabolism of microbes provides critical insights into their evolutionary adaptations to harsh environments, which are essential for microbial research and biotechnology applications. In this study, we developed an AI-driven image analysis system to efficiently segment individual cells and quantitatively analyze key cellular features. This system is comprised of four main modules. First, a denoising algorithm enhances contrast and suppresses noise while preserving fine cellular details. Second, the Segment Anything Model (SAM) enables accurate, zero-shot segmentation of cells without additional training. Third, post-processing is applied to refine segmentation results by removing over-segmented masks. Finally, quantitative analysis algorithms extract essential cellular features, including average intensity, length, width, and volume. The results show that denoising and post-processing significantly improved the segmentation accuracy of SAM in this new domain. Without human annotations, the AI-driven pipeline automatically and efficiently outlines cellular boundaries, indexes them, and calculates key cellular parameters with high accuracy. This framework will enable efficient and automated quantitative analysis of high-resolution fluorescence microscopy images to advance research into microbial adaptations to grow and metabolism that allow extremophiles to thrive in their harsh habitats.
Abstract:Studying the growth and metabolism of microbes provides critical insights into their evolutionary adaptations to harsh environments, which are essential for microbial research and biotechnology applications. In this study, we developed an AI-driven image analysis system to efficiently segment individual cells and quantitatively analyze key cellular features. This system is comprised of four main modules. First, a denoising algorithm enhances contrast and suppresses noise while preserving fine cellular details. Second, the Segment Anything Model (SAM) enables accurate, zero-shot segmentation of cells without additional training. Third, post-processing is applied to refine segmentation results by removing over-segmented masks. Finally, quantitative analysis algorithms extract essential cellular features, including average intensity, length, width, and volume. The results show that denoising and post-processing significantly improved the segmentation accuracy of SAM in this new domain. Without human annotations, the AI-driven pipeline automatically and efficiently outlines cellular boundaries, indexes them, and calculates key cellular parameters with high accuracy. This framework will enable efficient and automated quantitative analysis of high-resolution fluorescence microscopy images to advance research into microbial adaptations to grow and metabolism that allow extremophiles to thrive in their harsh habitats.
Abstract:Wireless signal-based human sensing technologies, such as WiFi, millimeter-wave (mmWave) radar, and Radio Frequency Identification (RFID), enable the detection and interpretation of human presence, posture, and activities, thereby providing critical support for applications in public security, healthcare, and smart environments. These technologies exhibit notable advantages due to their non-contact operation and environmental adaptability; however, existing systems often fail to leverage the textual information inherent in datasets. To address this, we propose an innovative text-enhanced wireless sensing framework, WiTalk, that seamlessly integrates semantic knowledge through three hierarchical prompt strategies-label-only, brief description, and detailed action description-without requiring architectural modifications or incurring additional data costs. We rigorously validate this framework across three public benchmark datasets: XRF55 for human action recognition (HAR), and WiFiTAL and XRFV2 for WiFi temporal action localization (TAL). Experimental results demonstrate significant performance improvements: on XRF55, accuracy for WiFi, RFID, and mmWave increases by 3.9%, 2.59%, and 0.46%, respectively; on WiFiTAL, the average performance of WiFiTAD improves by 4.98%; and on XRFV2, the mean average precision gains across various methods range from 4.02% to 13.68%. Our codes have been included in https://github.com/yangzhenkui/WiTalk.
Abstract:Many low-dose CT imaging methods rely on supervised learning, which requires a large number of paired noisy and clean images. However, obtaining paired images in clinical practice is challenging. To address this issue, zero-shot self-supervised methods train denoising networks using only the information within a single image, such as ZS-N2N. However, these methods often employ downsampling operations that degrade image resolution. Additionally, the training dataset is inherently constrained to the image itself. In this paper, we propose a zero-shot low-dose CT imaging method based on sinogram flicking, which operates within a single image but generates many copies via random conjugate ray matching. Specifically, two conjugate X-ray pencil beams measure the same path; their expected values should be identical, while their noise levels vary during measurements. By randomly swapping portions of the conjugate X-rays in the sinogram domain, we generate a large set of sinograms with consistent content but varying noise patterns. When displayed dynamically, these sinograms exhibit a flickering effect due to their identical structural content but differing noise patterns-hence the term sinogram flicking. We train the network on pairs of sinograms with the same content but different noise distributions using a lightweight model adapted from ZS-NSN. This process is repeated to obtain the final results. A simulation study demonstrates that our method outperforms state-of-the-art approaches such as ZS-N2N.
Abstract:Neural audio codecs have recently gained traction for their ability to compress high-fidelity audio and generate discrete tokens that can be utilized in downstream generative modeling tasks. However, leading approaches often rely on resource-intensive models and multi-quantizer architectures, resulting in considerable computational overhead and constrained real-world applicability. In this paper, we present SQCodec, a lightweight neural audio codec that leverages a single quantizer to address these limitations. SQCodec explores streamlined convolutional networks and local Transformer modules, alongside TConv, a novel mechanism designed to capture acoustic variations across multiple temporal scales, thereby enhancing reconstruction fidelity while reducing model complexity. Extensive experiments across diverse datasets show that SQCodec achieves audio quality comparable to multi-quantizer baselines, while its single-quantizer design offers enhanced adaptability and its lightweight architecture reduces resource consumption by an order of magnitude. The source code is publicly available at https://github.com/zhai-lw/SQCodec.
Abstract:Leveraging multi-center data for medical analytics presents challenges due to privacy concerns and data heterogeneity. While distributed approaches such as federated learning has gained traction, they remain vulnerable to privacy breaches, particularly in sensitive domains like medical imaging. Generative models, such as diffusion models, enhance privacy by synthesizing realistic data. However, they are prone to memorization, especially when trained on small datasets. This study proposes a decentralized few-shot generative model (DFGM) to synthesize brain tumor images while fully preserving privacy. DFGM harmonizes private tumor data with publicly shareable healthy images from multiple medical centers, constructing a new dataset by blending tumor foregrounds with healthy backgrounds. This approach ensures stringent privacy protection and enables controllable, high-quality synthesis by preserving both the healthy backgrounds and tumor foregrounds. We assess DFGM's effectiveness in brain tumor segmentation using a UNet, achieving Dice score improvements of 3.9% for data augmentation and 4.6% for fairness on a separate dataset.
Abstract:Wireless sensing systems, particularly those using mmWave technology, offer distinct advantages over traditional vision-based approaches, such as enhanced privacy and effectiveness in poor lighting conditions. These systems, leveraging FMCW signals, have shown success in human-centric applications like localization, gesture recognition, and so on. However, comprehensive mmWave datasets for diverse applications are scarce, often constrained by pre-processed signatures (e.g., point clouds or RA heatmaps) and inconsistent annotation formats. To overcome these limitations, we propose mmGen, a novel and generalized framework tailored for full-scene mmWave signal generation. By constructing physical signal transmission models, mmGen synthesizes human-reflected and environment-reflected mmWave signals from the constructed 3D meshes. Additionally, we incorporate methods to account for material properties, antenna gains, and multipath reflections, enhancing the realism of the synthesized signals. We conduct extensive experiments using a prototype system with commercial mmWave devices and Kinect sensors. The results show that the average similarity of Range-Angle and micro-Doppler signatures between the synthesized and real-captured signals across three different environments exceeds 0.91 and 0.89, respectively, demonstrating the effectiveness and practical applicability of mmGen.
Abstract:Chest X-ray (CXR) is the most frequently ordered imaging test, supporting diverse clinical tasks from thoracic disease detection to postoperative monitoring. However, task-specific classification models are limited in scope, require costly labeled data, and lack generalizability to out-of-distribution datasets. To address these challenges, we introduce CheXFound, a self-supervised vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks. We pretrain CheXFound on a curated CXR-1M dataset, comprising over one million unique CXRs from publicly available sources. We propose a Global and Local Representations Integration (GLoRI) module for downstream adaptations, by incorporating disease-specific local features with global image features for enhanced performance in multilabel classification. Our experimental results show that CheXFound outperforms state-of-the-art models in classifying 40 disease findings across different prevalence levels on the CXR-LT 24 dataset and exhibits superior label efficiency on downstream tasks with limited training data. Additionally, CheXFound achieved significant improvements on new tasks with out-of-distribution datasets, including opportunistic cardiovascular disease risk estimation and mortality prediction. These results highlight CheXFound's strong generalization capabilities, enabling diverse adaptations with improved label efficiency. The project source code is publicly available at https://github.com/RPIDIAL/CheXFound.
Abstract:In clinical practice, multiphase contrast-enhanced CT (MCCT) is important for physiological and pathological imaging with contrast injection, which undergoes non-contrast, venous, and delayed phases. Inevitably, the accumulated radiation dose to a patient is higher for multiphase scans than for a plain CT scan. Low-dose CECT is thus highly desirable, but it often leads to suboptimal image quality due to reduced radiation dose. Recently, a generalized Poisson flow generative model (PFGM++) was proposed to unify the diffusion model and the Poisson flow generative models (PFGM), and outperform either of them with an optimized dimensionality of the augmentation data space, holding a significant promise for generic or conditional image generation. In this paper, we propose a Poisson flow joint model (PFJM) for low-dose MCCT to suppress image noise and preserve clinical features. Our model is built on the PFGM++ architecture to transform the multiphase imaging problem into learning the joint distribution of routine-dose MCCT images by optimizing a task-specific generation path with respect to the dimensionality D of the augmented data space. Then, our PFJM model takes the joint low-dose MCCT images as the condition and robustly drives the generative trajectory towards the solution in the routine-dose MCCT domain. Extensive experiments demonstrate that our model is favorably compared with competing models, with MAE of 8.99 HU, SSIM of 98.75% and PSNR of 48.24db, as averaged over all the phases.
Abstract:Human Action Recognition (HAR) plays a crucial role in applications such as health monitoring, smart home automation, and human-computer interaction. While HAR has been extensively studied, action summarization, which involves identifying and summarizing continuous actions, remains an emerging task. This paper introduces the novel XRF V2 dataset, designed for indoor daily activity Temporal Action Localization (TAL) and action summarization. XRF V2 integrates multimodal data from Wi-Fi signals, IMU sensors (smartphones, smartwatches, headphones, and smart glasses), and synchronized video recordings, offering a diverse collection of indoor activities from 16 volunteers across three distinct environments. To tackle TAL and action summarization, we propose the XRFMamba neural network, which excels at capturing long-term dependencies in untrimmed sensory sequences and outperforms state-of-the-art methods, such as ActionFormer and WiFiTAD. We envision XRF V2 as a valuable resource for advancing research in human action localization, action forecasting, pose estimation, multimodal foundation models pre-training, synthetic data generation, and more.